
Mobile Backend
Development

Restful API (1)
Wan Muzaffar Wan Hashim

HTTP Methods

HTTP Methods CRUD Operation Description

POST Add (Create) Add Item inside database

PUT / POST Edit (Update) Change an Existing
Resource

GET Retrieve (Read) Retrieve existing resource

DELETE Delete (Delete) Delete existing resource

HTTP Response Status Information

Status code Meaning

1xx Informational Code

2xx Successful Codes

3xx Redirection Codes

4xx Client Error Code

5xx Server Error Code

REST API Routing
GET - http://www.example.com/api/v1/users
POST - http://www.example.com/api/v1/users
GET - http://www.example.com/api/v1/users/1
PUT - http://www.example.com/api/v1/users/1
DELETE - http://www.example.com/api/v1/users/1

http://www.example.com/api/v1/users
http://www.example.com/api/v1/users/1
http://www.example.com/api/v1/users/1

Backend programming languages

Backend framework

What is MEAN?

MEAN is an opinionated fullstack javascript framework - which simplifies and
accelerates web application development.

Why MEAN?
● 100% Free
● 100% Open Source
● 100% (Javascript and HTML)
● Single language throughout the application.
● Adhere to MVC concept.
● Use of JSON as data structure, compared to before where serialization and

deserialization of data structure is needed.

What is ExpressJS?
Express JS is a web application framework provides you with a simple
API to build websites, webapps and backends. You need not worry
about low level protocols, processes, etc.

Express provides a minimal interface to us to build our applications. It
is minimal, providing us the absolutely required tools to build our app
and flexible, there are numerous modules available on npm for express,
which can be directly plugged into express.

How Express helps you?
● Routing
● Add helpful Node.js HTTP objects
● Dynamic HTML Views
● Middleware

Express application flow

Express application flow (2)
● In Express, you write smaller functions or integrate other modules in your

application.
● Express has many utilities for partitioning these smaller request handler

functions.
● Request handler functions take two arguments: the request and the response.
● Node’s HTTP server provides some functionality; for example, browser’s user

agent extraction, sendFile..

Getting started with Express
1) Create a new folder, call it “Hello World.”
2) Initialize the project using ‘npm init’
3) Using npm, install Express package inside the project.
4) Install nodemon package so that you can see the change in node without

needing to refresh the server. (Refer to nodemon installation guide)

Try It: Hello World in Express JS.

var express = require('express');
var app = express();

app.get('/', function(req, res){
 res.send("Hello world!");
});

app.listen(3000);

Code Explanation

Code Explanation

app.get(route, callback) Define what to be done when a get request at the given route is called. The callback
function has 2 parameters, request(req) and response(res). The request object(req)
represents the HTTP request and has properties for the request query string, parameters,
body, HTTP headers, etc. Similarly, the response object represents the HTTP response that
the express app sends when it receives a HTTP request.

res.send() This function takes an object as input and it sends this to the requesting client. Here we
are sending the string "Hello World!".

app.listen(port, [host],
[backlog], [callback]])

This function binds and listens for connections on the specified host and port. Port is the
only required parameter here.

HTTP Methods

HTTP Method Description

GET The GET method requests a representation of the specified resource.
Requests using GET should only retrieve data and should have no other
effect.

POST The POST method requests that the server accept the data enclosed in
the request as a new object/entity of the resource identified by the URI.

PUT The PUT method requests that the server accept the data enclosed in the
request as a modification to existing object identified by the URI. If it
does not exist then PUT method should create one.

DELETE The DELETE method requests that the server delete the specified
resource.

Revision Exercise
1) We have used Sheetsu in module 1 to transform a Google Doc into an API.
2) Retrieve your Sheetsu API and try the different HTTP Methods:

a) GET
b) POST
c) PUT
d) DELETE

Routing in Express
When creating our Hello World project, we have created the route for our home
page. Here is the syntax for creating route in Express:

app.METHOD(PATH, HANDLER)

● METHOD is any one of the HTTP verbs(get, set, put, delete).

● Path is the route at which the request will run.

● Handler is a callback function that executes when a matching request type is found on

the relevant route.

Try it: Routing in Express

var express = require('express');
var app = express();

app.get('/hello', function(req, res){
res.send("Hello World!");

});

app.post('/hello', function(req, res){
res.send("You just called the post method at '/hello'!\n");

});
app.all('/test', function(req, res){

res.send("HTTP method doesn't have any effect on this route!");
});

app.listen(3000);

Using Routers
1) If we define all the route in index.js, it will become bigger and will be tedious

to maintain in the future.
2) The best practice is separating all routes in one file/module, based on

Separation of concern principle.
3) We will use Express Router to create the routes.

Try It: Using Routers (1) - api.js

var express = require('express');
var router = express.Router();

router.get('/', function(req, res){
res.send('GET route on things.');

});
router.post('/', function(req, res){

res.send('POST route on things.');
});
//export this router to use in our index.js
module.exports = router;

Try It: Using Routers (2) - server.js

var express = require('express');
var app = express();

var routes = require('./api.js');
//both index.js and things.js should be in same
directory
app.use('/api, api);

app.listen(3000);

Sending Parameters
In reality, you can send parameters to the API.

Eg: randomuser.me can take gender and nationalities as parameter.

Once the parameters are retrieved, we can return dynamic content to user.

We will create the dynamic parameters when defining the route, and retrieving it
back from the params property from the response.

Try It: Route with Parameters (1 param)

var express = require('express');
var app = express();

app.get('/:id', function(req, res){
 res.send('The id you specified is ' +
req.params.id);
});

app.listen(3000);

Try It: Route with Parameters (More than one)

var express = require('express');
var app = express();

app.get('/things/:name/:id', function(req, res){
 res.send('id: ' + req.params.id + ' and name: ' +
req.params.name);
});

app.listen(3000);

Middleware
Middleware functions are functions that have access to the request
object (req), the response object (res), and the next middleware
function in the application’s request-response cycle. These functions are
used to modify req and res objects for tasks like parsing request bodies,
adding response headers, etc.

The middleware will be called for every request on the server, you
can use it for example to log a server request, for example

Middleware flow

Try It : Middleware

var express = require('express');
var app = express();

//Simple request time logger
app.use(function(req, res, next){

console.log("A new request received at " + Date.now());
//This function call is very important. It tells that more processing is
//required for the current request and is in the next middleware function/route

handler.
next();

});

app.listen(3000);

Middleware order of execution
In Express, the order where the middleware is defined is important. It will be
executed as how we define it.

Execute the example from next page and observe the log that appears inside
console.

Try It : Middleware order of execution
var express = require('express');
var app = express();

//First middleware before response is sent
app.use(function(req, res, next){

console.log("Start");
next();

});
//Route handler
app.get('/', function(req, res, next){

res.send("Middle");
next();

});

app.use('/', function(req, res){
console.log('End');

});

app.listen(3000);

Important Middlewares
These are some of important middlewares that are being used in most of API
projects:

Body-parser - To parse the body of requests which have payloads attached to them.

Multer - Used to parse form/data for file upload.

Cookie Parser- To parse Cookie header and populate req.cookies with an object keyed by cookie names.

RESTful API
An API is always needed to create mobile applications, single page applications, use AJAX calls and provide data to

clients.

An popular architectural style of how to structure and name these APIs and the endpoints is called

REST(Representational Transfer State).

RESTful URIs and methods provide us with almost all information we need to process a request.

API Routing - Example

Method URI Function

GET /movies Gets the list of all movies and their

details

GET /movies/1234 Gets the details of Movie id 1234

POST /movies Creates a new movie with the

details provided. Response contains

the URI for this newly created

resource.

API Routing - Example 2

PUT /movies/1234 Modifies movie id 1234(creates one

if it doesn't already exist).

Response contains the URI for this

newly created resource.

DELETE /movies/1234 Movie id 1234 should be deleted, if

it exists. Response should contain

the status of the request.

Introduction to MongoDB
MongoDB is a cross-platform, document oriented database that provides, high performance,
high availability, and easy scalability. MongoDB works on concept of collection and
document.

Database :

Database is a physical container for collections. Each database gets its own set of files on
the file system. A single MongoDB server typically has multiple databases.

Introduction to MongoDB (2)
Collection:

Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A
collection exists within a single database. Collections do not enforce a schema. Documents
within a collection can have different fields. Typically, all documents in a collection are of
similar or related purpose.

Document:

A document is a set of key-value pairs. Documents have dynamic schema. Dynamic schema
means that documents in the same collection do not need to have the same set of fields or
structure, and common fields in a collection's documents may hold different types of data.

Example of document
{
 _id: ObjectId(7df78ad8902c)
 title: 'MongoDB Overview',
 description: 'MongoDB is no sql database',
 by: 'tutorials point',
 url: 'http://www.asiadev.academy',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 100,
 comments: [
 {
 user:'user1',
 message: 'My first comment',
 dateCreated: new Date(2011,1,20,2,15),
 like: 0
 },
 {
 user:'user2',
 message: 'My second comments',
 dateCreated: new Date(2017,5,25,7,45),
 like: 5
 }
]
}

Advantage of MongoDB
● Schema less − MongoDB is a document database in which one collection holds different documents. Number of

fields, content and size of the document can differ from one document to another.

● Structure of a single object is clear.

● No complex joins.

● Deep query-ability. MongoDB supports dynamic queries on documents using a document-based query language

that's nearly as powerful as SQL.

● Tuning.

● Ease of scale-out − MongoDB is easy to scale.

● Conversion/mapping of application objects to database objects not needed.

● Uses internal memory for storing the (windowed) working set, enabling faster access of data.

Why use MongoDB
● Document Oriented Storage − Data is stored in the form of JSON style documents.

● Index on any attribute

● Replication and high availability

● Auto-sharding

● Rich queries

● Fast in-place updates

● Professional support by MongoDB

Where to use MongoDB
● Big Data

● Content Management and Delivery

● Mobile and Social Infrastructure

● User Data Management

● Data Hub

Installing MongoDB locally

https://www.mongodb.com/

https://www.mongodb.com/

RDBMS

MongoDB
{
 _id: POST_ID
 title: TITLE_OF_POST,
 description: POST_DESCRIPTION,
 by: POST_BY,
 url: URL_OF_POST,
 tags: [TAG1, TAG2, TAG3],
 likes: TOTAL_LIKES,
 comments: [
 {
 user:'COMMENT_BY',
 message: TEXT,
 dateCreated: DATE_TIME,
 like: LIKES
 },
 {
 user:'COMMENT_BY',
 message: TEXT,
 dateCreated: DATE_TIME,
 like: LIKES
 }
]
}

Creating Database
use command to create a database. Example:

use mydb

db command to check what is the current database.

db

show dbs command to check the database list

show dbs

Drop Database
You will use db.dropdatabase() to drop/delete the current database.

db.dropDatabase()

Try It : Play with database
1) Connect to mongodb.
2) Create a new database call it mydb.
3) Insert one of the item inside the db:

db.joke.insert({"name":"Knock knock, who’s there?"})

4) List down all available dbs.
5) Delete the db.

MongoDB Collections
● A MongoDB collection is a list of MongoDB documents and is the equivalent

of a relational database table.

● A collection is created when the first document is being inserted.

● Unlike a table, a collection doesn't enforce any type of schema and can host

different structured documents.

● You may use show collections to see the available collections at the

moment.

Inserting data in MongoDB Collection
To insert data into MongoDB collection, we will use MongoDB's
insert() or save() method.

db.COLLECTION_NAME.insert(document)

You may also add more than one data at the time, by sending it as an
array separated by comma.

Inserting Data in MongoDB Collection

Query Document
We use find() method to query data from MongoDB collection.

db.COLLECTION_NAME.find()

You may use pretty() method to format the JSON nicely.

db.COLLECTION_NAME.find().pretty()

You may also use findOne() method if you only need to return 1 result.

db.COLLECTION_NAME.findOne()

Query

Filtering results.

Operation Syntax Example

Equality {“<key>”:”<value>”} db.places.find({"country":"France"})

Less Than {<key>:{$lt:<value>}} db.places.find({"likes":{$lt:120} })

Less than equals {<key>:{$lte:<value>}} db.places.find({"likes":{$lte:120} })

Greater than {<key>:{$gt:<value>}} db.places.find({"likes":{$gt:100} })

Greater than equal {<key>:{$gte:<value>}} db.places.find({"likes":{$gte:100} })

Not Equal {<key>:{$ne:<value>}} db.places.find({"likes":{$ne:100} })

AND and OR query in MongoDB
In find() method, if you pass multiple keys by separating them by ','
then MongoDB treats it as AND condition. Eg:

 db.places.find({"country":"France","likes":{$gt:100}})

To query documents based on the OR condition, you need to use $or
keyword, followed by an array of condition. Following is the basic

syntax of OR −

db.places.find({$or:[{"country":"France","likes":{$gte:100}}]})

Limiting records
You use limit() method to limit the number of documents to be displayed:

db.COLLECTION_NAME.find().limit(NUMBER)

Eg:db.places.find().limit(2)

You use skip() method to skip the number of documents to be displayed:

Eg: db.places.find({},{"name":1,_id:0}).limit(1).skip(1)

Sorting records
We use sort() method to specify the documents in a specific sorting
order. To specify sorting order 1 and -1 are used. 1 is used for
ascending order while -1 is used for descending order.

db.COLLECTION_NAME.find().sort({KEY:1})

Eg: db.places.find().sort({"name":1})

Updating a document
We use update() or save() methods to update a document into collection. You will
use:

Update - Update the current document with the updated data.

db.COLLECTION_NAME.update(SELECTION_CRITERIA, UPDATED_DATA)

db.places.update({'name':'Lille'},{$set:{'likes':200}})

Save - Replace the current document with new data.

db.COLLECTION_NAME.save({_id:ObjectId(),NEW_DATA})

Deleting a document
We use remove() method is used to remove a document from the
collection. remove() method accepts two parameters. One is deletion
criteria and second is justOne flag.

Eg:

db.places.remove({'name':'Lille'})

db.places.remove() -> Remove all

Projection
Projection means finding the necessary data rather than selecting whole
data of document. For example, if a data has 5 fields and you only need
to show 3, then you may only set to show 3 of them.

db.COLLECTION_NAME.find({},{KEY:1})

Eg:

db.mycol.find({},{"title":1,_id:0})

Indexing
Indexes support the efficient resolution of queries. Without indexes,
MongoDB must scan every document of a collection to select those
documents that match the query statement. We created index to speed
up the query process .

db.COLLECTION_NAME.ensureIndex({KEY:1})

Eg: db.places.ensureIndex({name:1})

Aggregation
Aggregations operations process data records and return computed
results.

Aggregation operations group values from multiple documents
together, and can perform a variety of operations on the grouped data
to return a single result.

db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

Eg:

db.places.aggregate([{$group : {_id: "$country", num_cities :

{$sum : 1}}}])

Aggregation

Expression Description Example

$sum Sums up the defined value from all documents
in the collection.

db.places.aggregate([{$group :
{_id: "$country", average_like :
{$sum : "$likes"}}}])

$avg Calculates the average of all given values from
all documents in the collection.

db.places.aggregate([{$group :
{_id: "$country", average_like :
{$avg : "$likes"}}}])

$min Gets the minimum of the corresponding values
from all documents in the collection.

db.places.aggregate([{$group :
{_id: "$country", average_like :
{$min : "$likes"}}}])

$max Gets the maximum of the corresponding
values from all documents in the collection.

db.places.aggregate([{$group :
{_id: "$country", average_like :
{$max : "$likes"}}}])

