
Industry 4.0 Academy
Introduction to MEAN Stack

Introduction to Module 2
● Advanced Javascript
● Backend Development
● Database (Relational vs Non Relational vs Graph DB)
● MEA(R)N Stack : MongoDB, Express JS, Angular/React, Node.JS
● Cloud

○ AWS
○ Google Cloud Platform
○ Azure

● Devops
○ Continuous Deployment
○ Continuous Integration
○ Docker

● System to system connection
○ Predictive Learning?
○ Recommendation based on Weather?

What are we going to build?
● REST API
● Intelligent REST API :) -> Authentication, Security
● System connecting to other system
● Connecting the system to your frontend (Using VueJS, and later using

React.js)

Module 2 class structure.
● Class… Discover new things! :)
● Exercise
● Code Challenge. - Application.. (50-50)
● Project...

Module 2 Project Requirement.
Booking API (virtual coach API, school material management, quiz API)...

● Dynamic data from backend.
● CMS for admin to manage content.
● Login/Authentication function.
● Intelligent features within the API, eg: Recommendation, Sending Email,

Sending push notification..
● Aggregate data from different website.

4 categories in a stack (Airbnb)
- Database - MySQL, Redis, RDS
- Frontend Framework - ReactJS
- Operating System/ Runtime environment - EC2 (Linux)
- Web Server - Nginx

4 categories in a Stack (Uber)
- Database - Postresql, MongoDB, Redis, AresDB
- Frontend Framework - jQuery, React
- Operating System/ Runtime environment - EC2
- Web Server - Nginx

LAMP Stack

Database - MySQL
Frontend Framework - PHP, Perl, Python
Operating System/ Runtime environment - Linux
Web Server - Apache

Content Management System

● Wordpress
● Drupal
● Magento
● WooCommerce by Wordpress
● Joomla
● Zencart
● Shopify

What is ME(A/R/V)N?

MEAN is an opinionated fullstack javascript framework - which simplifies and
accelerates web application development.

Why MEAN?
● 100% Free
● 100% Open Source
● 100% (Javascript and HTML)
● Single language throughout the application. (Javascript)
● Adhere to MVC concept.
● Use of JSON as data structure, compared to before where serialization and

deserialization of data structure is needed.

The fullstack journey
JS Python PHP (server

side language/
framework)

Java - Normally
used in
enterprise
application

.Net (C#)

Frontend web
framework

React.JS/VueJS/A
ngular

Django/Flask Laravel/CodeIgniter
/Yii

Angular .Net

Database MongoDB Mysql, Postresql MySql Oracle MS SQL

Runtime
environment

NodeJS Linux Linux Tomcat/Jboss
(Java Server)

.Net

Web server ExpressJs Django/Flask Laravel/CodeIgniter
/Yii

Spring/SpringBoot .Net

Mobile app
(module 3)

React Native/ Ionic Cannot Cannot Android Native Xamarin

Desktop app Electron Tkinter Cannot Yes JSF ??

Data science Can do it but no
mainstream

Main language for
data science

Cannot cannot.. ??

Node JS
● Open Source, cross platform runtime environment for server side and

networking application.
● Written in Javascript and can run on Linux, Mac, Windows and FreeBSD

running on the server.
● Based on event-driven architecture, and non blocking I/O that and optimize

and scalability.
● Uses Google Javascript V8 Engine to execute code.
● Used by Groupon, SAP, LinkedIn, Microsoft, Yahoo, Walmart, Paypal.

Why uses NodeJS?
● It is very lightweight and fast.
● Easy to configure.
● A lot of module available for free.
● Works with SQL and NoSQL.

What can be build with Node.js?
● REST API & Backend Applications
● Real-Time Services (Chat and Games)
● Blogs, CMS and Social Application.
● Utilities and Tools.
● Anything that is non CPU intensive

 http://nodejs.org

Installing NodeJS
1) Download Node.JS from nodejs.com
2) Choose the required nodejs version.
3) Run the downloaded .msi file.
4) Open powershell and enter npm -v and node -v to verify it has been installed.

Creating First Application: Hello Node!

var http = require('http');

http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello Node!');
}).listen(8080);

console.log('Server started on localhost:8080; press Ctrl-C to terminate....');

Create a new file index.js and add the following line of code.

Open terminal/CMD and type the following command to run the server :
node index.js

Internet - Interconnection of network..

Server - Computer, that is used to host data or information

Web Server - Computer, that is used to host a website

IP Address - An address that each of the device have to be connected to each
other..

Port - > is a number that links an application so that i can be connected from
outside .. 192.168.0.115 -> 32932

Node HTTP Module
The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,
collaborative, hypermedia information systems. HTTP is the foundation of data
communication for the World Wide Web.

Node.js has a built-in module called HTTP, which allows Node.js to transfer data
over the Hyper Text Transfer Protocol (HTTP).

How to run a Node program?
1) Open terminal or CMD.
2) Open the folder where the project is.
3) Type node ‘filename’ to complete.

npm
npm stands for Node Package Manager or NodeJS package manager.

It is the default package manager for Node.js.

It runs through the command line and it makes it easier to specify and link
dependencies.

npm important command

Command Description

npm --version Verify the version of npm installed inside

npm install <module name> Installing a new module inside project or globally

npm uninstall <module name> Uninstall a module

npm update <module name> Updating a module.

npm search <module name> Search for a module in npm repo.

npm init Start creating a module.

npm publish Publishing a module.

Using nodemon module

Using Nodemon
Monitor for any changes in your node.js application and automatically restart the
server - perfect for development

npm install -g nodemon

When you run the application, instead of using node <application name> you will
use

nodemon [your node app]

Whenever a change of code is detected, your local server will be restarted
automatically.

Try It: Downloading and Using a package
1) Go to http://www.npmjs.com and look for package to transform string from

lowercase .
2) Use npm command to install the package.
3) Add the package into the your ‘Hello World’ project.
4) Change the casing of the letter to be uppercase everywhere.

http://www.npmjs.com

Synchronous vs Asynchronous programming

Synchronous vs Asynchronous programming
In synchronous programs, if you have two lines of code (L1 followed by L2), then L2 cannot begin running until L1 has finished executing.

In asynchronous programs, you can have two lines of code (L1 followed by L2), where L1 schedules some task to be run in the future, but L2
runs before that task completes.

Try It: What will be the result?

function getData() {
var data; $.get("https://www.randomuser.me/api",
function(response) { data = response; });
return data; }

var data = getData();

console.log("The data is: " + data);

Callback in Node
● Callback is an asynchronous equivalent for a function.

● A callback function is called at the completion of a given task.

● Node makes heavy use of callbacks.

● All the APIs of Node are written in such a way that they support callbacks.

● Helps to maintain performance for single threaded NodeJS.

Example of non-callback function

var fs = require("fs");

var data = fs.readFileSync('input.txt');

console.log(data.toString());
console.log("Program Ended");

Example of callback function

var fs = require("fs");

fs.readFile('input.txt', function (err, data) {
 if (err) return console.error(err);
 console.log(data.toString());
});

console.log("Program Ended");

Difference of non-callback and callback
When program running on non-callback block, the program is running in a sequence. In a

programming point of view, it is easier to code however when a function takes a long time

to be executed, it will block the main thread.

Callback function allows the program to continue even though the program is still fetching

the data. Whenever the function finished execution it task, the callback function will be

called.

Node FS Module
You may use Node.JS Filesystem (FS) Module if you need to do an
operation for reading and writing from a filesystem.

This is a built in Node module that can be imported using require(‘fs’).

Every method in fs module has an synchronous and asynchronous
methods. In case of asynchronous method, the last parameter is the
completion function callback and the first method is the error.

Refer to https://nodejs.org/api/fs.html for documentation on
Filesystem.

https://nodejs.org/api/fs.html

Try It: Global and File Module - Read From .txt
1) Refer to readFile documentation in Filesystem Node.JS

documentation.
2) Create a Node.JS program that will open the previously created file

and append at the end of the line ‘Adding new text here..’
3) Create the program using:

a) Asynchronous execution
b) Synchronous execution

Try It: File Module - Read from file.
1) Create a .txt file inside a new folder within your project. Create

“Hello World” inside the .txt file.
2) Retrieve from index.js and retrieve the text inside the .txt file.

Try It: File Module - Write and read from file.
1) Refer to readFile documentation in Filesystem Node.JS

documentation.
2) Create a Node.JS program that will open a .txt file and write “Hello

World” to a new file.
3) Create the program using:

a) Asynchronous execution
b) Synchronous execution

4) Open the file that has been created and show the items in the file
on console.log

Try It: File Module - Append from file.
1) Refer to readFile documentation in Filesystem Node.JS

documentation.
2) Create a Node.JS program that will open the previously created file

and append at the end of the line ‘Adding new text here..’
3) Create the program using:

a) Asynchronous execution
b) Synchronous execution

Callback Hell / Pyramid of Doom
Callback Hell is the situation where the syntax of a callback is nested into several level.

Callback Hell causes code confusion and make the code difficult to understand.

It can also be referred as pyramid of doom.

doAsync1(function () {
 doAsync2(function () {
 doAsync3(function () {
 doAsync4(function () {
 })
 })
})

Example of a Callback Hell code

var fs = require('fs');

var myFile = '/tmp/test';
fs.readFile(myFile, 'utf8', function(err, txt) {
 if (err) return console.log(err);

 txt = txt + '\nAppended something!';
 fs.writeFile(myFile, txt, function(err) {
 if(err) return console.log(err);
 console.log('Appended text!');
 });
});

Avoiding Callback Hell
1) Create different functions for different callback.

function appendText(txt, err){
if(err) return console.log(err);
 txt = txt + '\nAppended something!';

}

function notifyUser(err){
if(err) return console.log(err);
 console.log('Appended text!');
}

Avoiding Callback Hell
2) Call the function in each other as callback.

var fs = require('fs');

function notifyUser(err) {

 if(err) return console.log(err);

 console.log('Appended text!');

};

function appendText(err, txt) {

 if (err) return console.log(err);

 txt = txt + '\nAppended something!';

 fs.writeFile(myFile, txt, notifyUser);

}

var myFile = '/tmp/test';

fs.readFile(myFile, 'utf8', appendText);

Event Driven Programming
A programming paradigm: When an event occurs, code something to respond to
them.

Eg: After a mouse click, when the keyboard is touched (Seen in Module 1)

In previous example, the event createServer takes a function as argument that will
be invoked every time HTTP request is invoked. The function will return a simple
text of Hello World.

Events in Node
● Support Node.JS to maintain concurrency.
● Node thread keeps an event loop.
● It fires corresponding event when the task is completed.
● Event signals event listener
● The difference between events and callback is that callback is called when an

asynchronous function is being completed, whereas event handling works
with Observer pattern.

Steps to create Event in Node.
1) Use events module.
2) Create an event emitter : var emitter = new events.EventEmitter();
3) Create the event handler : eventEmitter.on('eventName',

eventHandler);

4) Emit the event.

Events in Node
Methods Description

addListener(event, listener) Adds a listener at the end of the listeners array for
the specified event.

on(event, listener) Adds a listener at the end of the listeners array for
the specified event. No checks are made to see if
the listener has already been added.

once(event, listener) Adds a one time listener to the event. This listener
is invoked only the next time the event is fired,
after which it is removed.

removeListener(event, listener) Removes a listener from the listener array for the
specified event.

emit(event, [arg1], [arg2], [...]) Execute each of the listeners in order with the
supplied arguments.

Try It: Event

var events = require('events');
var emitter = new events.EventEmitter();

emitter.on("myEvent", function(){
console.log("Event Fired...");

});

emitter.emit("myEvent");

Try It: Event with parameter.

var events = require("events");
var emitter = new events.EventEmitter();

var username = "nodejs"
var password = "awsome"

emitter.on("userAdded", function(username, password){

console.log ("New user" + username);
});

emitter.emit("userAdded", username, password);

Error handling in Node
Whenever we write a callback function, you may notice that we have included
throw err line of code.

This is call ‘Error handling’ in Javascript. Whenever an error occur, we need to
manage it to ensure correct message will be shown.

In the example below, in case the file is not there, the exception will be thrown:

fs.readFile('input.txt', function (err, data) {
 if (err) throw err;

});

Node Global Module

Function Description

__filename The filename of the current module. This is the resolved
absolute path of the current module file.

__dirname Get the directory name of the current module.

setTimeout(callback,
delay) global function is used to run callback after delay

specified.

clearTimeout
Function to stop the timer that previously created.

Try It: Node Global Module.
1) Create a Node.JS script that will show in console the current directory of the

file.
2) Get the current filename of the file.

Node HTTP Module
The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,
collaborative, hypermedia information systems. HTTP is the foundation of data
communication for the World Wide Web.

Node.js has a built-in module called HTTP, which allows Node.js to transfer data
over the HyperText Transfer Protocol (HTTP).

Routing
Routing is the mechanism for serving the client the content it has asked for.

In a web-based client/server applications, the client specifies the desired content
in the URL; specifically, the path and querystring (the parts of a URL will be
discussed in more detail

The server will then return the desired content to the client.

Try It: Routingvar http = require('http');
http.createServer(function(req,res){
// normalize url by removing querystring, optional
// trailing slash, and making it lowercase
var path = req.url.replace(/\/?(?:\?.*)?$/, '').toLowerCase();
switch(path) {

case '':
res.writeHead(200, { 'Content-Type': 'text/plain' }); res.end('Homepage');
break;
case '/about':
res.writeHead(200, { 'Content-Type': 'text/plain' }); res.end('About');
break;
default:
res.writeHead(404, { 'Content-Type': 'text/plain' }); res.end('Not Found');
break;

}
}).listen(3000);
 console.log('Server started on localhost:3000; press Ctrl-C to terminate....');

Server using Filesystem
var http = require('http'), fs = require('fs');

function serveStaticFile(res, path, contentType, responseCode) {
if(!responseCode) responseCode = 200;
fs.readFile(__dirname + path, function(err,data) {

if(err) {
res.writeHead(500, { 'Content-Type': 'text/plain' });
res.end('500 - Internal Error');

}
else{

res.writeHead(responseCode,
 { 'Content-Type': contentType });

res.end(data);
}
});
}

Server using filesystem (2)

http.createServer(function(req,res)
{ // normalize url by removing querystring, optional // trailing slash, and making lowercase var
path = req.url.replace(/\/?(?:\?.*)?$/, '') .toLowerCase();
switch(path) {
case '': serveStaticFile(res, '/public/home.html', 'text/html');
break;
case '/about': serveStaticFile(res, '/public/about.html', 'text/html');
break; case '/img/logo.jpg': serveStaticFile(res, '/public/img/logo.jpg','image/jpeg');
break;
default: serveStaticFile(res, '/public/404.html', 'text/html', 404); break; } }).listen(3000);
console.log('Server started on localhost:3000; press Ctrl-C to terminate....');

