
Mimos training (Mygov)
Responsive website with Flexbox

Start to think responsively
Now that we have the fundamentals down, it’s time to get into the
responsive frame of mind.

We’ll work our way up from getting design work on a single screen so that it can
work on any device.

We’ll work our way up, exploring the do’s and don’ts and how to plan things out to
make your life easier in the long run.

What are we covering today
● How to approach a layout
● CSS Units (absolute, relative, percentage)
● Flexbox basics
● Media Query Basics

CSS Units
CSS Units come in different flavors:

● Absolut units
● Relative Units
● Percentage

CSS Units - Absolut unit
Absolut units are the easiest one to understand

● Pixels (px)
● Pt, cm, mm, in, etc

CSS Units - Percentages
Percentages are mainly used for widths and are pretty easy to understand.

● Relative to their parent

CSS Units - Relative Units
There are two type of relative units

● Relative to font size
● Relative to the view port

CSS Units - Relative Units

● Relative to font size
○ Em and rem (and many other less common ones)

● Relative to the view port
○ vw,vh , vmin, vmax

CSS Units Absolut unit
Absolut units are the easiest one to understand

● Pixels (px)
● Pt, cm, mm, in, etc

Exercise - Build the following website using relative unit

Checklist - Piano Exercise
In this exercise, ensure that:

● The size of the white box changes with the size of screen
● The image size adapt to the size of screen
● The font adapts to the size of the screen

Min-width and max-width

The property defines the minimum width of an element.

If the content is smaller than the minimum width, the minimum width will be applied.

The property defines the maximum width of an element.

If the content is larger than the maximum width, it will automatically change the height of the element.

If the content is smaller than the maximum width, the property has no effect.

Practice: Use min-width and max-width in the piano exercise to ensure after a certain size the box remains.

Using em and rem
The em and rem are considered relative, because they are relative to the font size
of other elements.

● Font size is an inherited property, so if you don’t declare it anywhere, it is
getting from the body (default is 16px)

● Em is related to the parent element whereas rem is related to the root HTML

Practice & Exercise
Use em and rem in your exercise.

● Set font size using em for some of your element, eg: 1.6em, 2.0em
● Set the body font-size of body to a different size, 10px then 16px
● See the effect on the other font-size set as em and rem

Can you see the difference between em and rem?

How to decide which units to use?
Pixels used to cause a lot of problems, as they were fixed unit (one dot on a
screen)

Now it follows the reference pixel.

This is normally what we use:

● Font-size: rem
● Padding:em
● Widths: em or percentage

The element of Flexbox
Elements normally have display:block or display:inline as a default from a
browser

Block elements stack from one to another, eg: h1-h1, p, div, footer, main, section
etc

Inline elements stay within the flow of what’s around them, eg: a, strong, em, span

We can change this behaviour by setting the display property to flex on the
parent element

The structure

Setting the layout to flex

Typography code

Size of the column & background color

Alignment content on the main axis

Flex direction Description

justify-content:flex-start; flex items are justified towards the start of the main axis (this
is the default)

justify-content:flex-end; flex items are justified towards the end of the main axis

justify-content:center; flex items are justified around the center of the main axis

justify-content:space-between; flex items are distributed evenly along the main axis, from
flex-start to flex-end

justify-content:space-around; flex items are distributed evenly along the main axis, but
half-size spaces are added to each end

The justify-content property aligns flex items within the flex container along the main axis. It distributes the
extra space left after the browser has calculated the necessary space for all items in the flex container.

https://www.w3.org/TR/css-flexbox-1/#propdef-justify-content

justify-content : flex-start

justify-content : flex-end

justify-content : center

justify-content : space-between

justify-content : space-around

Play around with justify-content

Finally create the proper spacing to our UI

Alignment content on the main axis

Flex direction Description

align-items:auto; makes the align-self property inherit the value of align-items
(default for align-self)

align-items:flex-start; flex items are aligned towards the start of the cross axis

align-items:flex-end; flex items are aligned towards the end of the cross axis

align-items:center; flex items are aligned around the center of the cross axis

align-items:baseline; flex items are aligned such that their baseline alignment lines
up

align-items:stretch; flex items are stretched along the cross axis to fill the flex
container (default for align-items)

The justify-content property aligns flex items within the flex container along the main axis. It distributes the
extra space left after the browser has calculated the necessary space for all items in the flex container.

https://www.w3.org/TR/css-flexbox-1/#ref-for-baseline-participation-1
https://www.w3.org/TR/css-flexbox-1/#propdef-justify-content

What is the setting for following page?

Media Query
Media queries let us add new styles that target only specific conditions.

The syntax is as follows:

@media() { … }

@media media-type and (media-features) { .. }

Media queries: Media type
The media type let’s us target different type of media

● screen : @media screen { .. }
● print : @media print { .. }
● speech: @media speech { .. }

Media queries - media condition
The media condition let us target specific condition within that media type

● Widths @media(min-width:600px) { … }
● Orientation @media (orientation:landscape) { … }
● Specific features @media(hover) { .. }

Both media types and conditions are optional. However we do need to have either
media type or condition

Media queries
We can target only screen:

@media screen { … }

Or we can choose a condition, such as the width of the viewport:

@media (min-width:960px) { .. }

Or combine both with and

@media screen and (min-width:960px) { .. }

Example - add the following code

What is wrong with this code?

Example - Media query with orientation

Defining the main axis: flex-direction

Flex direction Description

flex-direction: row; main axis runs from left to right (this is the
default)

flex-direction: row-reverse; main axis runs from right to left

flex-direction: column; main axis runs from top to bottom

flex-direction: column-reverse; main axis runs from bottom to top

Example (row)

Defining the main axis: flex-direction (row-reverse)

Defining the main axis: flex-direction (column)

Defining the main axis: flex-direction (column-reverse)

Set the media-query for max-width: 600px

Explanation on axis
When using flexbox we work with two axes: the main and cross axes.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox#The_two_axes_of_flexbox

HTML for the project

Positioning the navigation using Flexbox

CSS for Typography

Changing to different style of navigation

Adding media query to have nav view on phone

Adding media query to have nav view on phone

