Structure of an HTML website $=$ html + <tab>

<!DOCTYPE html>

<html>
<head>

<body>
</body>
</html>
Body
What you see in the browser

Website Elements

HTML - The structure of an application, where you define heading, subheading, paragraph, bullet and numbering, images etc..

CSS - It takes care of the styling in a website, for example the colour, background colour, font, paragraphing and layout

Javascript - What makes our website dynamic.. Answer to the question when $x x$ happens.. Do xxx -> eg: When the button is clicked.. Open a new page.., when the page is loaded.. Show something

Html + tab - structure
<head></head> - things that you dont' see -> configuration
<title></title> - title in the app bar
<body></body> whatever in the white area

All these elements will enter directly

<h1></h1>- Heading / title
<h2></h2> until <h6></h6> - subheading / subtitle
<p></p> - paragraph

Hr - horizontal ruler

Lorem + tab -> A long text in case you don't long paragraph

All these elements will not create new line directly

 - bold
 - italic
Img + tab -> to show image (get the link or locally, if locally, it has to be in the same folder)

A + tab -> to link to other website

Is you want to enter add
 - break

Keyboard Shortcut

ctrl $+x /$ cmd $+x$ cut
ctrl + c / cmd c - copy
Ctrl $+\mathrm{v}-\mathrm{cmd} \mathrm{v}$ - paste
Ctrl +z / cmd z- undo
Ctrl $+\mathrm{y} / \mathrm{cmd}+$ shift +z - redo (undo my undo)
Ctrl +s -> / cmd + z - save my code
Alt + tab -> / option + tab to change my window
In browser i use ctrl + r-cmd +r -> refresh my browser

List and numbering

Comments (ignoring the code)

<!-- -->
In sublime you highlight and ctrl + / or command + /

Base 2 (Binary)

	$2^{\wedge} 7$	$2^{\wedge} 6$	$2^{\wedge} 5$	$2^{\wedge} 4$	$2^{\wedge} 3$	$2^{\wedge} 2$	$2^{\wedge} 1$	$2^{\wedge} 0$
Base 10	128	64	32	16	8	4	2	1
65		1	0	0	0	0	0	1
74		1	0	0	1	0	1	0
123		1	1	1	1	0	1	1
11					1	0	1	1

1) You look for the biggest power of 2 from the number, put one there
2) You remove/minu the biggest power of 2 from the number, eg 74-64 $=10$
3) Repeat step 1 until the number become 0

Base 16

1,2,3,4,5,6,7,8,9,a,b,c,d,e,f

Base 10	$16^{\wedge 1}$	$16^{\wedge} 0$
123	7	b
193	c	1

1) You divide the number with $16(123 / 16)=$ eg: $7 . x x x x x x$. The first number will be 7
2) If the number is bigger than 9 refer to the list
3) Then you will look for the difference between the number and answer in a * $16=123-\left(16^{*} 7\right)=11$

Exercise

Base 10 to Base 2
23-00010111
200-11001000
89-01011001

Base 2 to Base 10
$11010010=128+64+16+2=210$
$01100101=64+32+4+1=101$
$00110111=32+16+7=55$

Base 10 to Base 16
$233=e 9$
$101=65$
$43=2 b$
255 - ff
0-00
Base 16 to Base 10

$$
\begin{aligned}
& a 1=(16 * 10)+1=161 \\
& 35=(16 * 3)+5=53 \\
& 7 e=126
\end{aligned}
$$

AND Logic

tired	hungry	tired \&\& hungry
false	false	false
false	true	false
true	false	false
true	true	true

OR Logic

| tired | hungry | tired \|| hungry |
| :--- | :--- | :--- |
| false | false | false |
| false | true | true |
| true | false | true |
| true | true | true |

Logic Gates

i	j	expectation	
0	0	$\#$	No need to repeat
1	0	$\# \#$	Repeat 2
2	0	$\# \# \#$	Repeat 3 times
3	2		
	0	$\# \# \# \#$	Repeat 4 times
	2		

Variable $=\mathrm{i}$, constant $=$ lines -6

i	j	expectation	lines-i-1
0	0	\#\#\#\#\#	5
	1		$6-1-0$
1	2		
	4	$\# \# \# \#$	4
	0		$6-1-1$
2	2		
	0	$\# \# \#$	

	0	1	2	3	4
0	$\#$	0	$\#$	0	$\#$
1	0	$\#$	0	$\#$	0
2	$\#$	0	$\#$	0	$\#$
3	0	$\#$	0	$\#$	0
4	$\#$	0	$\#$	0	$\#$

When i is even and j is even
When i is even and j is odd
When i is odd and j is even
When i is odd and j is odd

RANDOM NUMBER BETWEEN 01 AND 2

	0	1	2
Math.floor(Math.r andom($)^{*}$ 3)	$0-0.9999999999$	$1-1.99999999$	$2-2.999999999$
Math.round(Math .floor(Math.rando $\left.m()^{*} 2\right)$)	$0-0.499999999$	$0.5-1.49999999$	$1.5-1.999999999$
	$0.5 / 2=1 / 4$	$1 / 2$	$0.5 / 2=1 / 4$

We cannot use Math.round to generate a random number because the first and the last number will have lesser chance the appear than the number in the middle..
[1,2,3,4,5,6,7,8,9,10] - first round -> bigger.. Look at the top half $(5+10) / 2=8$ $[1,2,3,4,5,6,7,8,9,10]$ smaller $->$ look for at the bottom half $-5+8 / 2=7$
$[1,2,3,4,5,6,7,8,9,10]$ - smaller $->$ look at the bottom half $-5+7 / 2=6$
[1,2,3,4,5,6,7,8,9,10] -> Found the number
If i do using binary search i will find the number in 4 rounds, if not it will be in 6 round (Linear Search)

Number is $6 \ldots$

1-100

63 - With linear search i will find it within 63 tries
$50->1)$ lower than the searched number $(50+100 / 2)=75$
$75->2)$ higher than the searched number $(50+75) / 2=63$
With binary search I get it within 3 tries..

32 -> with linear search I will get it within 32 tries , within 3 tries
[0 ...100]
50 -> 1)
The number is higher than the searched number $(50+0 / 2)=25$
[25 ...50]
25 -> 2) The number is lower than the search number $(25+50 / 2)=$ [25 ...38]
$38-3$ The number is higher than the searched number $(25+38 / 2)=32$,

Every time, the area of search is divided into 2 ..
We say that binary search is a $\mathbf{O}(\mathbf{l o g}(\mathrm{n}))$ algorithm - > Let say that you need to find a number between 1 and 100, your max try will be: .. (confirm with you)

